Assignment 7 Introduction to Data Analytics Prof. Nandan Sudarsanam & Prof. B. Ravindran

- 1. Let X, Y be two itemsets, and let supp(X) denote the support of itemset X. Then the confidence of the rule $X \to Y$, denoted by $conf(X \to Y)$ is
 - supp(X)(a) $\overline{supp(Y)}$
 - $\frac{supp(Y)}{supp(X)}$ (b)

 - $\underline{supp}(X \cup Y)$ (c)supp(X)
 - $supp(X \cup Y)$ (d)supp(Y)
 - $\underline{supp}(X \cap Y)$ (e)
 - supp(X)
- 2. In identifying frequent itemsets in a transactional database, we find the following to be the frequent 3-itemsets: {B, D, E}, {C, E, F}, {B, C, D}, {A, B, E}, {D, E, F}, {A, C, F}, {A, C, E}, {A, B, C}, {A, C, D}, {C, D, E}, {C, D, F}, {A, D, E}. Which among the following 4-itemsets can possibly be frequent?
 - (a) $\{A, B, C, D\}$
 - (b) $\{A, B, D, E\}$
 - (c) $\{A, C, E, F\}$
 - (d) $\{C, D, E, F\}$
- 3. Let X, Y be two itemsets, supp(X) denote the support of itemset X and $con f(X \to Y)$ denote the confidence of the rule $X \to Y$, denoted by $conf(X \to Y)$. Then lift of the rule, denoted by $lift(x \to Y \text{ is}$
 - $\underline{supp}(X)$ (a) $\overline{supp(Y)}$
 - $supp(X) \times supp(Y)$ (b)supp(Y)
 - $\underline{supp}(X \cup Y)$ (c)supp(X)
 - $supp(X \cup Y)$ (d) $\overline{supp(X) \times supp(Y)}$
 - $supp(X \cap Y)$ (e) $\overline{supp(X) \times supp(Y)}$
- 4. Consider the following transactional data.

Transaction ID	Items
1	A, B, E
2	B, D
3	В, С
4	A, B, D
5	Α, C
6	В, С
7	Α, C
8	A, B, C, E
9	A, B, C

Assuming that the minimum support is 2, what is the number of frequent 2-itemsets (i.e., frequent items sets of size 2)?

- (a) 2
- (b) 4
- (c) 6
- (d) 8
- 5. For the same data as above, what are the number of candidate 3-itemsets and frequent 3-itemsets respectively?
 - (a) 1, 1
 - (b) 2, 2
 - (c) 2, 1
 - (d) 3. 2
- 6. Continuing with the same data, how many association rules can be derived from the frequent itemset {A, B, E}? (Note: for a frequent itemset X, consider only rules of the form S -¿ (X-S), where S is a non-empty subset of X.)
 - (a) 3
 - (b) 6
 - (c) 7
 - (d) 8
- 7. For the same frequent itemset as mentioned above, which among the following rules have a minimum confidence of 60%?
 - (a) $A \wedge B \implies E$
 - (b) $A \wedge E \implies B$
 - (c) $E \implies A \wedge B$
 - (d) $A \implies B \wedge E$

- 8. Suppose we are given a large text document and the aim is to count the words of different lengths, i.e., our output will be of the form x words of length 1, y words of length 2, and so on. Assuming a map-reduce approach to solving this problem, which among the following key-value outputs would you prefer for the map phase? (Hint: consider the solution for the reduce part asked in the next question as well to ensure a complete algorithm to solve the problem.)
 - (a) key word, value length (of corresponding word)
 - (b) key word, value 1
 - (c) key length (of corresponding word), value word
 - (d) key 1, value word
- 9. For the above question, what would be the appropriate processing action in the reduce phase?
 - (a) for each key which is a word, compute the sum of the values corresponding to this key
 - (b) for each key which is a number, compute the lengths of the words in the corresponding list of values
 - (c) for each key which is a number, count the number of words in the corresponding list of values
- 10. Let d_1 and d_2 be two distances according to some distance measure d. A function f is said to be (d_1, d_2, p_1, p_2) -sensitive if
 - (a) if $d(x, y) \leq d_1$, then the probability that f(x) = f(y) is at least p_1
 - (b) if $d(x, y) \ge d_2$, then the probability that f(x) = f(y) is at most p_2

where $d(\cdot, \cdot)$ is a distance function. Given such a (d_1, d_2, p_1, p_2) -sensitive function, a better function (for use in locality sensitive hashing) would be one with

- (a) an increased value of p_1
- (b) a decreased value of p_1
- (c) an increased the value of p_2
- (d) a decreased the value of p_2